Special-Ops.pl

Uszkodzenia turbin wiatrowych i bezinwazyjne metody ich wczesnego wykrywania

Prototyp robota do inspekcji stanu łopat siłowni wiatrowej [11]

Prototyp robota do inspekcji stanu łopat siłowni wiatrowej [11]

W artykule omówiono rodzaje uszkodzeń występujących w elektrowniach wiatrowych. Na podstawie najnowszych statystyk udokumentowanych awarii turbin wiatrowych wskazano najczęściej występujące przyczyny powstawania uszkodzeń. Artykuł zawiera również przegląd dostępnych obecnie bezinwazyjnych metod umożliwiających diagnostykę krytycznych elementów turbiny wiatrowej oraz przykłady ich implementacji.

Zobacz także

Sposoby ograniczania pola magnetycznego 50 Hz we wnętrzowych stacjach transformatorowych SN/nn

Sposoby ograniczania pola magnetycznego 50 Hz we wnętrzowych stacjach transformatorowych SN/nn Sposoby ograniczania pola magnetycznego 50 Hz we wnętrzowych stacjach transformatorowych SN/nn

W artykule przedstawiono i omówiono wpływ wnętrzowych stacji transformatorowych, będących źródłem pola magnetycznego, na ludzi przebywających w ich pobliżu. Zawarto przykładowe wartości natężeń pola magnetycznego...

W artykule przedstawiono i omówiono wpływ wnętrzowych stacji transformatorowych, będących źródłem pola magnetycznego, na ludzi przebywających w ich pobliżu. Zawarto przykładowe wartości natężeń pola magnetycznego zidentyfikowane pomiarowo w różnych pomieszczeniach zlokalizowanych nad lub obok rozdzielni SN/nn. Głównym celem artykułu jest zaprezentowanie metod ograniczania natężenia pola magnetycznego poprzez stosowanie ekranów magnetycznych lub odpowiedniej konfiguracji szyn w rozdzielniach niskiego...

Prąd włączenia transformatorów toroidalnych pod napięcie w stanie jałowym

Prąd włączenia transformatorów toroidalnych pod napięcie w stanie jałowym Prąd włączenia transformatorów toroidalnych pod napięcie w stanie jałowym

Coraz powszechniejsze stosowanie transformatorów toroidalnych oraz znaczne zwiększenie ich mocy także w urządzeniach elektronicznych, np. w zasilaczach wzmacniaczy akustycznych, spowodowało, że prąd włączenia...

Coraz powszechniejsze stosowanie transformatorów toroidalnych oraz znaczne zwiększenie ich mocy także w urządzeniach elektronicznych, np. w zasilaczach wzmacniaczy akustycznych, spowodowało, że prąd włączenia takich transformatorów pod napięcie stał się problemem.

Transformatory rozdzielcze w energetyce

Transformatory rozdzielcze w energetyce Transformatory rozdzielcze w energetyce

Transformatory to statyczne maszyny elektryczne służące do przetwarzania energii elektrycznej. Stosuje się je do podwyższania lub obniżania napięcia w sieciach elektroenergetycznych. Znajdują one również...

Transformatory to statyczne maszyny elektryczne służące do przetwarzania energii elektrycznej. Stosuje się je do podwyższania lub obniżania napięcia w sieciach elektroenergetycznych. Znajdują one również zastosowanie w zasilaczach UPS, napędach przekształtnikowych i wielu innych urządzeniach. Jedną z wad transformatorów są ich straty własne, które w skali całej sieci dystrybucyjnej i przesyłowej są dość znaczne. Współczesne technologie umożliwiają budowę transformatorów o minimalnych stratach oraz...

Koszty operacyjne i serwisowe turbiny wiatrowej stanowią istotną część całkowitych kosztów generacji energii elektrycznej w energetyce wiatrowej. Średnio, dla całego okresu eksploatacji turbiny, można je oszacować na 20 do 25% całkowitych kosztów utrzymania turbiny, przy czym dla turbin nowych są one mniejsze – wynoszą 10 do 15% i wzrastają wraz ze zużywaniem się turbiny do ok. 20 do 35% w końcowej fazie jej eksploatacji [6].

Całkowity koszt wytworzenia energii wiatrowej po uwzględnieniu kosztów serwisu oraz okresów przestoju wynosi ok. 26 gr/kWh w elektrowniach typu on-shore i 34 gr/kWh w elektrowniach typu off-shore, co w porównaniu z kosztami generacji rzędu 12 do 16 gr/kWh w elektrowniach węglowych i 10 do 15 gr/kWh w elektrowniach gazowych [12] pokazuje celowość wprowadzenia nowych technik diagnostycznych umożliwiających zmniejszenie kosztów operacyjnych i serwisowych. Powinno też mieć pozytywny wpływ na kształtowanie się cen energii elektrycznej pochodzącej z generacji wiatrowej.

Przyczyny i skutki uszkodzeń elektrowni wiatrowych

Wśród uszkodzeń najczęściej spotykanych w elektrowniach wiatrowych można wyróżnić:

  • uszkodzenia generatora i elementów wirujących wspólnie z generatorem,
  • uszkodzenia łopat turbin wiatrowych,
  • uszkodzenia masztu elektrowni wiatrowej,
  • inne uszkodzenia mogące prowadzić do wyłączenia elektrowni z eksploatacji i generujące koszty napraw.

Praktyka pokazuje, że najbardziej istotne i często zbyt późno zaobserwowane są uszkodzenia elementów wirujących oraz łopat turbin wiatrowych. W tabeli 1. przedstawiono elementy gondoli turbiny wiatrowej najczęściej ulegające uszkodzeniom [9]. Przyczynami uszkodzeń elementów wirujących jest zazwyczaj długotrwałe poddanie ich obciążeniu, zmęczenie materiału i nieprawidłowości w wykonaniu. W przypadku łopat dodatkowymi czynnikami mogącymi powodować uszkodzenia są zderzenia z obiektami oraz wyładowania atmosferyczne.

Mimo rosnącego postępu technologicznego i mniejszego prawdopodobieństwa wystąpienia pojedynczej awarii łączna, liczba awarii rośnie wraz ze wzrostem zainstalowanych turbin wiatrowych. Liczbę udokumentowanych uszkodzeń w światowej energetyce wiatrowej – z wyróżnieniem przypadków, w których poszkodowani zostali ludzie – przedstawiono w tabeli 2. W tabeli 3. przedstawiono z kolei przyczyny uszkodzeń turbin wiatrowych w poszczególnych okresach, podobnie jak w tabeli 2. odnotowywano tylko awarie, które doprowadziły do całkowitego lub czasowego wyłączenia elektrowni z eksploatacji.

Najczęstszym powodem uszkodzeń – wśród przyczyn, które udało się jednoznacznie określić – było oderwanie się fragmentów lub całych łopat od wirnika siłowni wiatrowej. Istnieją udokumentowane przypadki, że takie elementy przemieszczały się w powietrzu na odległość kilkuset metrów, a nawet 1300 m od siłowni, przebijając dachy i ściany pobliskich budynków [16]. Pożar, który uznano za przyczynę 159 awarii, może być szczególnie niebezpieczny w przypadku siłowni wiatrowej ze względu na dużą wysokość wieży, utrudniającą efektywne gaszenie, jak często również długi (uwarunkowany położeniem obiektu) czas potrzebny na dojazd jednostek straży pożarnej.

Awarie sklasyfikowane jako uszkodzenia materiałowe powstały głównie w wyniku uderzenia piorunów w element siłowni, wyładowań atmosferycznych, ale także poprzez zaniedbania w konserwacji i niedostateczny nadzór. Rozwojowi tego typu uszkodzeń można odpowiednio wcześnie zapobiegać, stosując monitoring również za pomocą metod bezinwazyjnych.

Oblodzenie jako przyczynę awarii stwierdzono w 31 przypadkach, biorąc jednak pod uwagę poświęcone temu badania [4], przypadki takie są znacznie częstsze, w samych Niemczech w latach 1990–2003 stwierdzono 880 przypadków oblodzeń. Skutki oblodzeń w ujęciu statystycznym przedstawiono w tabeli 4.

Uszkodzenia w wyniku czynników środowiskowych powstawały głównie w wyniku kolizji z ptakami, nietoperzami i innymi zwierzętami. Liczba oficjalnie odnotowywanych kolizji jest kwestionowana przez organizacje proekologiczne. Widoczny jest jednak wzrost podobnych incydentów od ok. 2007 roku, czego przyczyny należy upatrywać głównie w zmianie ustawodawstwa niektórych krajów obligującego do monitorowania tego typu przypadków. W 74 przypadkach doszło do uszkodzenia, zniszczeń, a nawet zaginięcia w morzu istotnych elementów siłowni wiatrowej podczas transportu, odnotowano również wypadki, w których poszkodowani zostali ludzie. W 83 udokumentowanych przypadkach stwierdzono winę człowieka jako przyczynę awarii.

W pozostałych przypadkach opisanych w tabeli 3. jako niesklasyfikowane nie określono jednoznacznie przyczyny awarii, na ogół jest to łączne wystąpienie kilku przyczyn, zachowanie zbyt małej odległości pomiędzy elektrownią wiatrową a zabudowaniami, zwarcia w części elektrycznej nieprowadzące bezpośrednio do pożaru, zmęczenie materiału oraz następstwa wyładowań atmosferycznych, których np. w samych tylko Niemczech w latach 1992–1995 w pobliżu siłowni wiatrowych stwierdzono 393, z czego 124 bezpośrednio w turbinę, resztę w sieć elektroenergetyczną [5].

Bezinwazyjne metody badań w energetyce wiatrowej

Większość łopat stosowanych obecnie w elektrowniach wiatrowych produkowana jest z żywic epoksydowych wzmocnionych włóknami kompozytowymi. W mniejszych konstrukcjach spotykane są również poliestry i poliwinyle, a w przypadku większych jednostek używane są włókna węglowe i kevlar. W starszych konstrukcjach często można spotkać włókna szklane. Mimo że materiały kompozytowe mają wiele zalet, są one również podatne na uszkodzenia, mogą posiadać wady materiałowe, które zmniejszają ich wytrzymałość i sztywność. Łopaty turbin pękają najczęściej na krawędziach, w pobliżu środka i na końcach (miejsca oznaczone literami A–D na rysunku 1.). Przyczyną pęknięć mogą być wady produkcyjne. Wszelkie niezamierzone lokalne zróżnicowanie stanu fizycznego lub właściwości mechanicznych kompozytu może mieć istotny wpływ na jego zachowanie strukturalne i tworzenie się ognisk uszkodzeń. Również czynniki eksploatacyjne, takie jak: wyładowania atmosferyczne, uszkodzenia powierzchni (także przez nieprawidłową obsługę), uderzenia gradu, szron, woda, erozja mechaniczna krawędzi, promieniowanie świetlne i ultrafioletowe, zmęczenie materiału, zamarzanie i topnienie wody oraz penetracja olejów i smarów powodująca rozwarstwienie, mogą być przyczyną pęknięć materiału kompozytowego [13].

Zastosowanie metod bezinwazyjnych prowadzi do detekcji uszkodzeń we wczesnym stadium ich pojawienia się, więc na ogół dużo wcześniej przed wystąpieniem całkowitego wyłączenia i awarii siłowni wiatrowej. Może być szczególnie efektywne w przypadku uszkodzeń sklasyfikowanych jako: uszkodzenia materiałowe i środowiskowe, poprzez eliminację potencjalnej przyczyny pożaru oraz detekcję miejsca, w którym może nastąpić oderwanie się elementów łopat od wirnika.

Czas bezawaryjnej pracy elektrowni wiatrowej jest dużo trudniejszy do przewidzenia niż w przypadku innych konwencjonalnych metod wytwarzania energii elektrycznej. Wynika to z braku dokładnej wiedzy o długotrwałym profilu obciążenia mechanicznego (nie można dokładnie przewidzieć, jak będzie wiał wiatr i jak zmieniać się będą warunki meteorologiczne). Obciążenie łopat wirnika wynika z sił aerodynamicznych, zmian prędkości wiatru, losowych turbulencji, obciążeń wynikających z siły grawitacji i siły odśrodkowej, drgań oraz wielu innych czynników statycznych i dynamicznych. Aby zminimalizować możliwość wystąpienia potencjalnej awarii, personel techniczny prowadzi okresowe inspekcje, których częstość jest zależna od wytycznych operatora (na ogół co kilka miesięcy).

Każde wyłączenie turbiny wiatrowej z eksploatacji, czy to spowodowane awarią, czy planowanym przestojem kontrolno-serwisowym, powoduje bezproduktywną generację kosztów. Przeprowadzona analiza [3] wykazała, że nie istnieje ujednolicony, certyfikowany i akredytowany sposób wykorzystania bezinwazyjnych technik pomiarowych do detekcji miejsc wystąpienia potencjalnych uszkodzeń w łopatach turbin siłowni wiatrowych. Stosowanie bezinwazyjnych metod w energetyce wiatrowej opiera się przede wszystkim na własnych wytycznych operatorów elektrowni wiatrowych. Wstępną metodą bezinwazyjnego wykrywania uszkodzeń są oględziny i osłuch dokonywane przez personel techniczny – nie jest to metoda skomplikowana, ale jej próg czułości jest dość wysoki: uszkodzenia na ogół widać i słychać dopiero, gdy są już w zaawansowanym stadium rozwoju.

Metody bezinwazyjnej analizy uszkodzeń najczęściej stosowane lub testowane w energetyce wiatrowej to:

Termografia w podczerwieni to technika pozwalająca zlokalizować różne formy uszkodzenia materiału kompozytowego, np. pęknięcia włókien, rozwarstwienia, rysy. Jest ona odpowiednia do wykrywania wad we wczesnym stadium rozwoju, a tym samym zapobiega wystąpieniu poważniejszego w skutkach uszkodzenia. Wykorzystywane są różne czujniki, których zakres pracy (widmo promieniowania elektromagnetycznego) zawiera się pomiędzy promieniowaniem widzialnym a mikrofalowym.

Monitoring z użyciem promieniowania podczerwonego znajduje szerokie zastosowanie na etapie produkcji i montażu łopat turbin wiatrowych. Krytyczne punkty łopat kontrolowane są ze szczególną starannością. Skanery podczerwieni wykorzystuje się do badania łopat na całej długości, mierząc wielokrotnie te same punkty. Skaner jest w stanie prześwietlić laminat i sprawdzić jakość połączenia w miejscu klejenia. Zapisuje różnice temperatur w kleju, ewentualne wady i wykonuje serię zdjęć. W razie wątpliwości punkt może zostać przeanalizowany np. przy użyciu metod cyfrowej analizy obrazu. Znalezione wady na tym etapie mogą być prawie zawsze natychmiast naprawione.

Termografia w podczerwieni zapewnia analizę całego elementu w sposób bezdotykowy. Czułość stosowanych obecnie skanerów jest wystarczająca do analizy zmęczenia materiału, a nawet do wykrywania uszkodzeń łopat spowodowanych oddziaływaniem wiatru [3].

Analiza akustyczna. Materiały poddane naprężeniom i stresowi mogą emitować w wyniku zmian strukturalnych fale dźwiękowe. Fala dźwiękowa jest emitowana przez gwałtowne uwolnienie się energii w materiale. Zjawisko to występuje na ogół w miejscu pęknięcia lub zmiany struktury. Szybkość i właściwości emisji, tj. liczba, czas trwania i jego zmiana, amplituda, częstotliwość, energia czy wartość skuteczna mogą być użyte jako wskaźnik uszkodzenia, można w ten sposób wykrywać i lokalizować uszkodzenia. Metoda ta jest szeroko stosowana np. do badania konstrukcji stalowych, takich jak kadłuby statków, zbiorniki paliw, rurociągi czy generatory w elektrowniach. W przypadku metali służy do wykrywania przede wszystkim: wad spoiny, korozji, tarcia, uderzeń mechanicznych, nieszczelności i wad eksploatacyjnych.

Materiały kompozytowe stosowane w energetyce wiatrowej to na ogół tworzywa wzmacniane włóknami, analiza akustyczna pozwala w takim przypadku na monitorowanie wielu zjawisk, np. pękania włókien, odrywania się włókien od materiału w miejscu łączenia i wewnątrz laminatu, odkształcania włókien, odkształcania i deformacji wsporników konstrukcji. Najbardziej znaczące w przypadku powstawania uszkodzeń łopat są pęknięcia pomiędzy dwiema częściami struktury. Powstają one w wyniku stopniowego łamania się włókien, które może być wykryte za pomocą analizy akustycznej. W przypadku większych konstrukcji duże tłumienie akustyczne wyklucza analizę amplitudy, chyba że pochodzenie poszczególnych sygnałów można zidentyfikować. W badaniu łopat elektrowni wiatrowych wymagana jest dość duża dokładność, co powoduje, że w chwili obecnej badania z zastosowaniem tylko tej metody nie dawałyby zadowalających rezultatów [1].

Analiza drgań jest techniką szeroko stosowaną w przemyśle do oceny stanu maszyn i przewidywania miejsca wystąpienia uszkodzenia. Użycie tej techniki w przemyśle zostało zapoczątkowane w 1925 roku przez Schenka, który zbudował pierwszy przenośny aparat do pomiaru drgań. Wraz z pojawieniem się komputerów możliwe stało się wykonanie analizy Fouriera mierzonego sygnału i analiza częstotliwościowa drgań. Technika ta, choć obiecująca do wykorzystania w energetyce wiatrowej, natrafia jednak na poważny problem, który stanowią drgania pochodzące od różnych elementów konstrukcji elektrowni wiatrowej. Te „konstrukcyjne” wibracje wywoływane są głównie przez wiatr i zależą również od jego siły oraz kierunku. Wynika to z samej konstrukcji wieży, która jest dość wysoka, z wysoko umieszczonym środkiem ciężkości, i nie ma wsporników.

Światłowody. Światłowodowe włókna optyczne to kolejny sposób na bezinwazyjną kontrolę stanu łopat i innych elementów kompozytowych konstrukcji elektrowni wiatrowej. Umieszczanie włókien optycznych w strukturze kompozytu jest wykorzystywane w przemyśle lotniczym. Czujniki światłowodowe są lekkie, pasywne, energooszczędne, odporne na zakłócenia elektromagnetyczne, mają dużą czułość oraz pojemność przy transmisji danych. Jednak ze względu na potrzebę zainstalowania dużej liczby czujników do nadzoru całej konstrukcji zawierającej wiele elementów kompozytowych i konieczności zbierania wielkiej ilości danych o lokalnych naprężeniach oraz stosowania wysokich temperatur podczas procesu umieszczania czujników koszt takiej instalacji szacowany jest nawet na kilkaset tysięcy złotych. Czujniki światłowodowe mogą być wykorzystywane do pomiaru naprężeń w głównych kierunkach działających sił, dane zbierane przez przetwornik i przesyłane bezprzewodowo do jednostki centralnej monitorującej stan całej konstrukcji. Systemy takie są w chwili obecnej w stanie testów i nie doczekały się realizacji praktycznej na większą skalę.

Analiza olejów smarowych zwykle składa się z trzech różnych pomiarów: temperatury oleju, analizy zawartości cząstek i analizy chemicznej smaru. Pomiar temperatury jest podobny do opisanej wcześniej termografii, analiza zawartości cząstek pozwala na określenie zużycia części maszyn, a analiza chemiczna smaru bada stan samego smaru i służy głównie do określenia momentu jego wymiany. Technika ta jest przydatna szczególnie jako uzupełnienie innych metod inspekcyjnych, oszacowuje stan maszyn, ale próg jej czułości jest dość wysoki [7].

„Odcisk” prądu generatora. Pojawienie się w widmie prądu generatora dodatkowych składowych częstotliwościowych w porównaniu do normalnej pracy generatora może dostarczyć danych do identyfikacji następujących uszkodzeń: uzwojeń stojana i wirnika, stanu wirnika, szczelin statycznych i dynamicznych, sprzęgła, przekładni, łożysk i obciążenia, itp. W chwili obecnej metoda ta jest bardzo rzadko wykorzystywana, ponieważ dane pomiarowe są trudne do interpretacji, zależą poza tym od zastosowanego generatora i budowy elektrowni oraz są trudne do uogólnienia na inne przypadki [10].

Analiza modalna. Eksperymentalna analiza modalna jest często stosowaną w praktyce techniką badania własności dynamicznych obiektów mechanicznych, zarówno na etapie konstruowania, jak i w eksploatacji maszyn. Eksperyment identyfikacyjny w eksperymentalnej analizie modalnej polega na wymuszeniu drgań obiektu przy jednoczesnym pomiarze siły wymuszającej i odpowiedzi układu, najczęściej w postaci widma przyspieszeń drgań. Do identyfikacji obiektów mechanicznych o dużych rozmiarach przestrzennych i dużych masach stosowana jest metoda eksploatacyjnej analizy modalnej, oparta na pomiarze odpowiedzi na wymuszenia eksploatacyjne, będące wynikiem działania sił procesu technologicznego, bądź wymuszeń kinematycznych oraz procesu destrukcji elementów maszyny [14].

W energetyce wiatrowej metoda ta podobnie jak metoda „odcisku” prądu generatora napotyka na problemy w interpretacji danych pomiarowych i określenia na ich podstawie miejsca oraz rodzaju potencjalnego uszkodzenia.

Techniki oparte na wielu metodach. Każda z przedstawionych metod bezinwazyjnych posiada wady, dlatego lepsze efekty daje zastosowanie kilku metod jednocześnie. Aby inspekcja stanu łopat elektrowni wiatrowej mogła się odbywać w miejscu jej zainstalowania (ląd, morze), niezależnie od pogody zbudowano roboty wykorzystujące skanery kilku bezinwazyjnych technik pomiarowych do detekcji uszkodzeń łopat wirników elektrowni wiatrowych, można tutaj wymienić różne koncepcje robotów przemieszczających się wzdłuż nieruchomej łopaty, dokonujące analizy bez udziału człowieka, np. robot powstały w wyniku projektu RIWEA (fot. 1.) [8] czy prototyp robota opracowany przez Sattara i innych (fot. 2.) [11]. Przykład wizualizacji działania takiego robota przedstawia fotografia 3. [2].

Podsumowanie

Koszty serwisu mogą zostać zmniejszone, jeżeli uszkodzony element zostanie zdiagnozowany na odpowiednio wczesnym etapie awarii. Wymaga to jednak zastosowania technik umożliwiających szybką detekcję potencjalnej awarii, najlepiej bez konieczności wyłączania turbiny z eksploatacji – on-line na podstawie parametrów ruchowych lub jeżeli nie jest to możliwe – przez dokonanie pomiarów na miejscu bez konieczności demontażu, ewentualnego transportu i ponownego montażu badanego elementu. Wraz ze zwiększeniem się wymiarów i liczby instalowanych elektrowni wiatrowych, zastosowanie metod bezinwazyjnych do badania turbin wiatrowych zyskuje na znaczeniu. Intensywność prowadzonych badań pozwala spodziewać się w najbliższym czasie nowych urządzeń umożliwiających coraz bardziej kompleksową analizę stanu elektrowni wiatrowej.

Literatura

  1. Anastassopoulos A. et al., Structural integrity evaluation of wind turbine blades using pattern recognition analyses on acoustic emission data, EWGAE 2002, Vol. 1, pp. 21-28, Praha 11-13.09.2002
  2. Bridge, B., Climbing robots for non destructive testing: historical perspective and future trends, Advances in Climbing and Walking Robots: Proceedings of 10th International Conference CLAWAR, pp. 25-32, World Scientific Publishing Co Ltd, Singapore 2007
  3. Drewry M., Georgiou G., A review of Non Destructive Testing Techniques for Wind Turbines, Annual British Conference on NDT, 09/2006
  4. Durstwitz M., A Statistical Evaluation of Icing Failures in Germanys “250 MW Wind”-Programme (Update 2003), BOREAS VI,  Pyhätunturi 9-11.04.2003
  5. Durstwitz M., Ensslin C., Hoppe-Klipper M., Rohrig K., External Condition for Wind Turbine Operation - Results from Germany “250 MW Wind”-Programme, European Union Wind Energy Conference, Goeteborg 20-24.05.1996
  6. European Wind Energy Association, Wind Energy – The Facts, Earthscan 2009, ISBN 9781844077106
  7. Jones N., Yu-Hua L., A Review of Condition Monitoring and Fault Diagnosis for Diesel Engines, Tribotest 03/2000, Vol. 6, Issue 3, pp. 267–291
  8. Jüngert A. et al., Zerstörungsfreie robotergestützte Untersuchung der Rotorblätter von Windenergieanlagen mit Ultraschall und Thermographie, ZfP-Zeitung 115, 06/2009, ss. 43-49
  9. McMillan D., Ault G., Quantification of Condition Monitoring Benefit for Offshore Wind Turbines, Wind Engineering, Vol. 31, No. 4, 2007
  10. Mehala N., Dahiya R., Motor Current Signature Analysis and its Applications in Induction Motor Fault Diagnosis, International Journal of Systems Applications, Engineering & Development, Vol. 2, Issue 1, 2007
  11. Sattar T., Rodriguez R., Bridge B., Climbing Ring Robot for Inspection of Offshore Wind Turbines, Industrial Robot: An International Journal, Vol. 36, Issue 4, pp. 326-330, 2009
  12. The Royal Academy of Engineering, The Cost of Generating Electricity, London 2010, www.raeng.org.uk
  13. Wallace J., Dawson M., O&M for Wind Turbine Blades, Renewable Energy Focus, 06/2009
  14. Żółtowski B., Badania dynamiki maszyn, Markar – B.Ż. 2002, ISBN 83-916198-3-4
  15. Summary of Wind Turbine Accident, data to 30.06.2011, www.caithnesswindfarm.co.uk/accidens.pdf
  16. Wind Turbine Accident Compilation, data to 30.06.2011, www.caithnesswindfarm.co.uk/fullaccident.pdf

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Najnowsze produkty i technologie

BALLISTOL – jakość i wszechstronność!

BALLISTOL – jakość i wszechstronność! BALLISTOL – jakość i wszechstronność!

Rynek wszelkiego rodzaju czyścideł i smarowideł dla broni jest obecnie bardzo mocno rozbudowany. Mnogość producentów, marek, może przyprawić o zawrót głowy. Co wybrać? Co będzie najlepsze do czyszczenia...

Rynek wszelkiego rodzaju czyścideł i smarowideł dla broni jest obecnie bardzo mocno rozbudowany. Mnogość producentów, marek, może przyprawić o zawrót głowy. Co wybrać? Co będzie najlepsze do czyszczenia karabinu, co do sztucera, a co do pistoletu? Wiadomo, że tak samo jak myć ręce, szczególnie w obliczu Covid-19, trzeba dbać o czystość broni. Dzięki temu służyć nam będzie niezawodnością i perfekcyjnym działaniem przez długie lata.

Elementy instalacji przemysłowej

Elementy instalacji przemysłowej Elementy instalacji przemysłowej

Elementy instalacji elektrycznej w domu zasadniczo różnią się od instalacji pracującej w fabrykach czy warsztatach. Specyfika zakładów przemysłowych wymaga zastosowania określonych elementów instalacji....

Elementy instalacji elektrycznej w domu zasadniczo różnią się od instalacji pracującej w fabrykach czy warsztatach. Specyfika zakładów przemysłowych wymaga zastosowania określonych elementów instalacji. Omówimy dzisiaj gniazda, wtyczki i przewody przemysłowe, porównując je do odpowiedników, które są stosowane w naszych domach.

UPS-y kompensacyjne

UPS-y kompensacyjne UPS-y kompensacyjne

Urządzenia zasilania bezprzerwowego są niezbędnym elementem układów zasilania wrażliwych odbiorów, procesów technologicznych, zasilania centrów danych i układów automatyki. Środowisko techniczne, w jakim...

Urządzenia zasilania bezprzerwowego są niezbędnym elementem układów zasilania wrażliwych odbiorów, procesów technologicznych, zasilania centrów danych i układów automatyki. Środowisko techniczne, w jakim te urządzenia funkcjonują, opisują normy na urządzenia odbierające energię z sieci energetycznej oraz normy i wymagania na sieć zasilającą, w szczególności wymagania na jakość energii elektrycznej dostarczanej przez operatora systemu dystrybucji energii OSD.

Valena Allure – ikona designu

Valena Allure – ikona designu Valena Allure – ikona designu

Valena Allure to nowa seria osprzętu firmy Legrand, łącząca wysmakowaną awangardę i nowoczesność. Wyróżniający ją kształt ramek oraz paleta różnorodnych materiałów zachęcają do eksperymentowania. Valena...

Valena Allure to nowa seria osprzętu firmy Legrand, łącząca wysmakowaną awangardę i nowoczesność. Wyróżniający ją kształt ramek oraz paleta różnorodnych materiałów zachęcają do eksperymentowania. Valena Allure pomoże z łatwością przekształcić Twój dom w otoczenie pełne nowych wrażeń i stanowić będzie źródło kolejnych inspiracji.

Bezpieczeństwo podczas prac serwisowych

Bezpieczeństwo podczas prac serwisowych Bezpieczeństwo podczas prac serwisowych

Niezależnie od tego, gdzie chcesz zastosować program Lockout/Tagout, firma Brady będzie Cię prowadzić i wspierać. Nasze kompleksowe rozwiązanie Lockout/Tagout obejmuje innowacyjne kłódki z rozbudowanym...

Niezależnie od tego, gdzie chcesz zastosować program Lockout/Tagout, firma Brady będzie Cię prowadzić i wspierać. Nasze kompleksowe rozwiązanie Lockout/Tagout obejmuje innowacyjne kłódki z rozbudowanym planowaniem kluczy, specjalistyczne blokady zabezpieczające, praktyczne oprogramowanie i doskonałe usługi obejmujące identyfikację punktów kontroli energii oraz najlepsze w swojej klasie tworzenie procedur.

Słowniczek najważniejszych pojęć z branży elektrycznej

Słowniczek najważniejszych pojęć z branży elektrycznej Słowniczek najważniejszych pojęć z branży elektrycznej

Znasz to uczucie, gdy wchodząc do sklepu stacjonarnego albo przeszukując największe internetowe sklepy elektryczne, czujesz się zagubionym i niepewnym? Wśród tysięcy produktów i oznaczeń nie wiesz jaki...

Znasz to uczucie, gdy wchodząc do sklepu stacjonarnego albo przeszukując największe internetowe sklepy elektryczne, czujesz się zagubionym i niepewnym? Wśród tysięcy produktów i oznaczeń nie wiesz jaki produkt spełni Twoje oczekiwania i co ważne – stanie się bezpiecznym i funkcjonalnym?

Rejestratory sieciowe NVR – czym różnią się od DVR, do czego są przeznaczone?

Rejestratory sieciowe NVR – czym różnią się od DVR, do czego są przeznaczone? Rejestratory sieciowe NVR – czym różnią się od DVR, do czego są przeznaczone?

W przeciwieństwie do rejestratorów DVR urządzenia NVR służą do obsługi kamer wykorzystujących protokół internetowy. Urządzenia te nie potrzebują dodatkowego okablowania do transferowania danych – pobierają...

W przeciwieństwie do rejestratorów DVR urządzenia NVR służą do obsługi kamer wykorzystujących protokół internetowy. Urządzenia te nie potrzebują dodatkowego okablowania do transferowania danych – pobierają je przez internet od skonfigurowanych ze sobą kamer IP. Co jeszcze warto wiedzieć o rejestratorach sieciowych NVR?

Nowoczesne zespoły zabezpieczeń WN typu e2TANGO-2000

Nowoczesne zespoły zabezpieczeń WN typu e2TANGO-2000 Nowoczesne zespoły zabezpieczeń WN typu e2TANGO-2000

Wdrożenie platformy zabezpieczeń typu e2TANGO dla średnich napięć zaowocowało pozytywnym odbiorem przez klientów oraz jednoczesne sugestie, aby rozszerzyć ofertę firmy o zabezpieczenia WN. Ideą...

Wdrożenie platformy zabezpieczeń typu e2TANGO dla średnich napięć zaowocowało pozytywnym odbiorem przez klientów oraz jednoczesne sugestie, aby rozszerzyć ofertę firmy o zabezpieczenia WN. Ideą podczas tworzenia platformy automatyki zabezpieczeniowej WN było zapewnienie odbiorców o całkowitej pewności działania strony sprzętowej oraz oprogramowania i algorytmów.

Odnawialne źródła energii, a krajowe bilanse energetyczne w roku 2017

Odnawialne źródła energii, a krajowe bilanse energetyczne w roku 2017 Odnawialne źródła energii, a krajowe bilanse energetyczne w roku 2017

Odnawialne źródła energii - jeśli chodzi o ich udział w Polskiej gospodarce, to odnotowuje się wzrost OZE z roku na rok. Niezaprzeczalnie nadal najwięcej energii w naszym kraju pochodzi ze źródeł konwencjonalnych,...

Odnawialne źródła energii - jeśli chodzi o ich udział w Polskiej gospodarce, to odnotowuje się wzrost OZE z roku na rok. Niezaprzeczalnie nadal najwięcej energii w naszym kraju pochodzi ze źródeł konwencjonalnych, z paliw kopalnych, takich jak węgiel kamienny, brunatny, gaz ziemny czy ropa naftowa. Ciągłe uzależnienie kraju od dostaw gazu i ropy, nie oddziałuje pozytywnie na stan gospodarki czy poczucie komfortu społeczeństwa z zakresu energetyki, a w tym podwyżek cen za energię elektryczną. Nie...

Nowoczesne oświetlenie Neonica

Nowoczesne oświetlenie Neonica Nowoczesne oświetlenie Neonica

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą...

Podczas remontu mieszkania, domu, pokoju czy biura, lub w trakcie planowania od samego początku ważnej dla nas przestrzeni, najczęściej w głowie mamy już przygotowaną wizję lub koncepcję. Plany te dotyczą zarówno układu mebli, wykorzystanych materiałów czy koloru ścian. Jednak przede wszystkim warto dokładnie i z uwagą podjąć decyzje związane z wyborem odpowiedniego oświetlenia.

Bezprzerwowy System Zasilania Merus UPQ

Bezprzerwowy System Zasilania Merus UPQ Bezprzerwowy System Zasilania Merus UPQ

Bezprzerwowy System Zasilania Merus UPQ to innowacyjna koncepcja, łącząca funkcje zasilacza UPS i aktywnego filtra harmonicznego w jedno solidne rozwiązanie.

Bezprzerwowy System Zasilania Merus UPQ to innowacyjna koncepcja, łącząca funkcje zasilacza UPS i aktywnego filtra harmonicznego w jedno solidne rozwiązanie.

Czy wykwalifikowani elektrycy muszą aż tyle robić ręcznie?

Czy wykwalifikowani elektrycy muszą aż tyle robić ręcznie? Czy wykwalifikowani elektrycy muszą aż tyle robić ręcznie?

Rosnąca ilość zleceń, coraz bardziej złożone projekty oraz niewystarczająca ilość specjalistów daje się we znaki również w branży produkcji aparatury sterowniczej. Firmy Rittal i Eplan zauważyły to wyzwanie...

Rosnąca ilość zleceń, coraz bardziej złożone projekty oraz niewystarczająca ilość specjalistów daje się we znaki również w branży produkcji aparatury sterowniczej. Firmy Rittal i Eplan zauważyły to wyzwanie i zapoczątkowały wspólny projekt – zintegrowany łańcuch wartości, czyli systemowe podejście do optymalizacji i industrializacji procesów prefabrykacji szaf sterowniczych i rozdzielnic.

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Elektro.Info.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.elektro.info.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.elektro.info.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.